

WALTHER FLENDER CLAMPING PLATES FOR LIFTERS AND LINEAR DRIVES

Characteristics

Tooth profiles	CLASSIC (CL) für HYBRID LL& PowerGrip® HTD LL Zahnriemen) ADVANCED (AD) für PowerGrip® GT LL Zahnriemen Poly Chain® GT für Poly Chain® GT Carbon™ LL Zahnriemen T / AT für endliche Zahnriemen aus Polyurethan								
Standard materials	AW 6063 (AIMg0,7Si) AW 6060 (AIMg0,5Si) Further materials available on request								
Available surface treatments	Coating Chemical nickel plating								

Dimensions

Belt system	b (mm)	ød (mm)	e (mm)	L (mm)	H (mm)	Total width B according to belt width (mm)																
						6	9	10	15	16	20	25	30	32	40	50	55	75	85	100	115	150
Open-Length Neoprene timing belts:																						
3M	5	4,5	2	25	6	21	24		30													
5M	6	5,5	3,2	41,5	8			29	34			44										
8M	8	9	5	66	15				40		45		55			75			110			
8M (AD)	8	9	5	66	15																	
14M	10	11	9	116	22										71		86		116		146	181
Open-Lengt	h Polyı	iretha	ne timi	ng bel	ts:																	
Т5	6	5,5	3,25	41,5	8			29		35		44		51		71						
AT5	6	5,5	5	65	8			29		35		44		51		71						
T10	8	9	10	110	15					41		50		57		75		100		125		175
AT10	8	9	10	110	15					41		50		57		75		100		125		175
T20	10	11	10	160	20							56		65		81		106		132		
AT20	10	11	20	200	20							56		65		81		106		132		182

Notes

The synchronous belts are secured using special clamping plates which are manufactured with cross sections which match exactly the profiles of the teeth in the various belt systems. In normal applications we recommend engaging 8 teeth on the belt; belt drives subjected to more extreme loading (e.g. drives to lift heavier masses) should be fixed using two attachment plates, located one behind the other and engaging in 16 teeth in order to achieve a satisfactory degree of safety. Excess pressure applied to one side of the tensile member will result in damage and weakening of the connection. Ideal fixing height is achieved where the width of the web in the belt is compressed by 0.1 to 0.2 mm. Basically, we recommend solid/solid clamping – Steel on Steel; Steel on Aluminum; Aluminium on Aluminum.

A sandwich clamping fixed-rubber hard (clamp plate and toothed clamping plate do not touch each other) should, because of the shear-loaded screws, to be avoided.

All data, calculations and other information are based on our current knowledge and have been compiled with great care. The available data are nonbinding and serve informational purposes only. Further information can be found at www.walther-flender.de